Computing the Topological Entropy of unimodal Maps

نویسندگان

  • Rui Dilão
  • José María Amigó
چکیده

We derive an algorithm to determine recursively the lap number (minimal number of monotone pieces) of the iterates of unimodal maps of an interval with free end-points. The algorithm is obtained by the sign analysis of the itineraries of the critical point and of the boundary points of the interval map. We apply this algorithm to the estimation of the growth number and the topological entropy of maps with direct and reverse bifurcations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalisation-induced phase transitions for unimodal maps

The thermodynamical formalism is studied for renormalisable maps of the interval and the natural potential −t log |Df |. Multiple and indeed infinitely many phase transitions at positive t can occur for some quadratic maps. All unimodal quadratic maps with positive topological entropy exhibit a phase transition in the negative spectrum.

متن کامل

A Simplified Algorithm for the Topological Entropy of Multimodal Maps

A numerical algorithm to compute the topological entropy of multimodal maps is proposed. This algorithm results from a closed formula containing the so-called min-max symbols, which are closely related to the kneading symbols. Furthermore, it simplifies a previous algorithm, also based on min-max symbols, which was originally proposed for twice differentiable multimodal maps. The new algorithm ...

متن کامل

Homoclinic Tangencies in Unimodal Families with Non-constant Topological Entropy

Let C r ((0; 1]) denote the metric space of C r self-maps of 0; 1] and C s;r ((0; 1]) denote the metric space of C s families of maps in C r ((0; 1]) with the parameter space 0; 1]. Let Hs;r be the unimodal families with non-constant topological entropy in C s;r ((0; 1]). We show that for s 0, r 2, there is an open and dense subset Gs;r of Hs;r such that each family in Gs;r has a map with a hom...

متن کامل

ENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE

There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...

متن کامل

Entropy of a semigroup of maps from a set-valued view

In this paper, we introduce a new entropy-like invariant, named Hausdorff metric entropy, for finitely generated semigroups acting on compact metric spaces from a set-valued view and study its properties. We establish the relation between Hausdorff metric entropy and topological entropy of a semigroup defined by Bis. Some examples with positive or zero Hausdorff metric entropy are given. Moreov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012